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Abstract

A semi-analytical plane elasticity solution of the circular hole with diametrically opposite notches in a homogeneous

and isotropic geomaterial is presented. This solution is based on: (i) the evaluation of the conformal mapping function

of a hole of prescribed shape by an appropriate numerical scheme and (ii) the closed-form solutions of the Kolosov–

Muskhelishvili complex potentials. For the particular case of circular notches––which resemble to the circular cavity

breakout in rocks––it is demonstrated that numerical results pertaining to boundary stresses and displacements pre-

dicted by the finite differences model FLAC2D, as well as previous analytical results referring to the stress-concen-

tration-factor, are in agreement with analytical results. It is also illustrated that the solution may be easily applied to

non-rounded diametrically opposite notch geometries, such as ‘‘dog-eared’’ breakouts by properly selecting the res-

pective conformal mapping function via the methodology presented herein. By employing a stress-mean-value brittle

failure criterion that takes into account the stress-gradient effect in the vicinity of the curved surfaces in rock as well as

the present semi-analytical solution, it is found that a notched hole, e.g. borehole or tunnel breakout, may exhibit stable

propagation. The practical significance of the proposed solution lies in the fact that it can be used as a quick-solver for

back-analysis of borehole breakout images obtained in situ via a televiewer for the estimation of the orientation and

magnitude of in situ stresses and of strain–stress measurements in laboratory tests.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Notched shaped configurations of rock cavities such as that shown in Fig. 1 are often encountered

in mining, petroleum and geophysical engineering practice. They are present in deep boreholes as break-
outs and in underground openings exhibiting sidewall spalling. In Fig. 1, the formation of the breakout
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cross-section by successive spalling can be clearly seen. Field practice shows that the geometry of such

notched configurations can greatly influence the load bearing capacity of the rock structure and conse-

quently its stability.
The excavation process reduces the confining stress to zero on the boundary of the opening. Thus, tunnel

and borehole breakouts occur under high in situ stresses when the tangential stress at the excavation wall

overcomes the uniaxial compressive strength of the rock. Under unequal principal stresses rock failure that

is manifested by axial splitting and spalling fractures that are often extensional in nature, is observed in two

diametrically opposed zones parallel to the minor principal stress forming a notched shaped excavation. An

idealized breakout geometry is depicted in Fig. 2 where the initial breakout is shown by the dashed curve.

Such breakouts are valuable indicators of the direction of action of the minimum compressive stress, while

their size and shape, recorded via dipmeters and more precisely now by televiewers, may provide infor-
mation about the magnitudes of the maximum and minimum stresses relative to the strength of the rock. As

the in situ strength of rock and its state of stress are difficult to determine at great depth, observations of the

size and shape of the breakouts and conditions under which they form could lead to estimation of these

parameters, provided that a thorough understanding of the mechanisms involved in breakout formation

become clear. According to Guisiat and Haimson (1992), Hottman et al. (1979) were perhaps the first

investigators to attempt to estimate magnitudes of horizontal principal stresses from borehole breakouts.

The good agreement of their estimation with other stress indicators led both Gough and Bell (1982) and

Fig. 2. Idealized breakout configuration. The initial breakout shape is rounded whereas the final cross-sectional shape of the breakout

is wedge-shaped (dog-eared).

Fig. 1. Underground opening exhibiting side collapse in the form of successive spalling forming a stable breakout shape.
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Zoback et al. (1985) to investigate the mechanisms of borehole breakouts from field and laboratory ex-

periments. They concluded that size, shape and depth could be predicted by using Kirsch�s (1898) elasticity
solution and a linear Mohr–Coulomb failure criterion. In another more elaborate type of model (Zheng

et al., 1988) the stresses around the borehole were compared to those required to cause failure according to
a spalling criterion for the immediate zone around the borehole wall and the Mohr–Coulomb criterion for

the remaining rock.

Thus, underground excavations in rock in the form of deep boreholes and tunnels or caverns display

usually some degree of deviation from the circular shape either due to optimization of their shape or due

to sidewall failure of the rock mass. Almost all relevant modeling work has been based on Kirsch�s so-
lution for elastic stresses around circular holes. Since a circular solution cannot describe an actual not-

ched-hole geometry it is evident that a completely new solution is necessary. As it is noted by Cheatham

(1993) an exact elasticity solution for a breakout configuration that is quite similar to the initial circular
cavity breakout shape (Fig. 2) has been published by Mitchell (1966). By using the method of complex

potential funtions /ðzÞ, wðzÞ of Muskhelishvili (1963), Mitchell (1966) has solved the stress-concentration-
problem for a doubly symmetrical hole whose boundary consists of three intersecting circles. However, it

would appear that the evaluation of the full-field stress distribution around the hole, and consequently the

stress-gradient effect, has not been pursued by the author since he did not present the solution for the

second potential function wðzÞ of the complex variable z ¼ xþ iy. Therefore, at this point it should be
made clear that Mitchell has not presented the complete solution for the elastic stresses and displace-

ments 1 around the doubly symmetric hole. Further, the same investigator did not consider the effect of
internal pressure. However, one may argue that the exercise of finding the complete representation of the

stresses and displacements around notched openings analytically is still warranted in view of availability

of many accurate and easy to use finite element, finite difference, or boundary element computer codes. In

order to reply to this argument, we simply refer here to the statement made by Carranza-Torres and

Fairhurst (1999):

. . .Although the complex geometries of many geotechnical design problems dictate the use of numer-
ical modeling to provide more realistic results than those from classical analytical solutions, the insight
into the general nature of the solution (influence of the variables involved, etc.) that can be gained from

the classical solution is an important attribute that should not be overlooked. Some degree of simpli-

fication is always needed in formulating a design analysis and it is essential that the design engineer be

able to assess the general correctness of a numerical analysis wherever possible. The closed-form results

provide a valuable means of making this assessment. . .

Based on the above considerations, a semi-analytical solution of the notched circular cylindrical opening

in elastic, isotropic and homogeneous rock is presented in Section 3, that is based on the powerful con-

formal mapping method 2 in conjunction with a numerical scheme (Section 2) and closed-form complex
function solutions. Subsequently in Section 4, Mitchell�s stress-concentration-solution for the doubly

symmetric hole is compared successfully with the proposed solution. Moreover, stress and displacement

analysis results of the present solution are compared with those predicted by the FLAC2D finite differences

code. In the same section, it is also illustrated that this solution may be applied to solve non-rounded

diametrically opposed notches, such as the dog-eared (wedge-shaped) notches. In Section 5, the effect of

1 The displacement solution is of interest to the geotechnical engineer for the design of tunnel or borehole support and for the back-

analysis of tunnel or borehole closure measurements.
2 Jaeger and Cook (1976) in their celebrated book of Rock Mechanics state explicitly that ‘‘. . . By far the most powerful method for

the solution of two-dimensional problems is the detailed use of complex variable theory and conformal representation as developed in

the books of Muskhelishvili (1963) and Savin (1961). . .’’
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internal pressure on borehole stability is demonstrated. Also, a theoretical background is developed, based

on the stress-gradient effect due to stress concentrations caused by extremely curved surfaces, that may lead

to a better understanding of the stability of cavities in rock. The capability of this theory to capture the

stability of breakout formation is also demonstrated in this section. Finally, Section 6 presents the main
conclusions of this work.

2. The conformal mapping representation of notched openings

The methodology starts with the conformal mapping 3 of the boundary of the notched hole C and its

exterior region S (Fig. 3a) into the interior of the circle with unit radius (region R in Fig. 3b). The position
of every point in the physical z-plane with z ¼ xþ iy ¼ reia is mapped into the unit circle in the f-plane with
f ¼ n þ ig ¼ qeih by the complex function

z ¼ xþ iy ¼ xðfÞ ¼ a0
f
þ
Xn

k¼1
a2k�1f

2k�1; fj j6 1 ð1Þ

where the constant coefficients a0, a2k�1 ðk ¼ 1; 2; . . . ; nÞ are real numbers since the loading and geometry
configuration of the problem exhibits symmetry with respect to both Ox- and Oy-axes. These coefficients
must be chosen in such a manner that the curve is an adequate approximation to that of Fig. 3a. Note that

the point z describes the contour C in the z-plane in an anti-clockwise direction, as the point fmoves around
the circle in the f-plane, likewise in a clockwise direction (Fig. 3b). This is because the opening exterior
infinite region is mapped into an interior finite region. Also, the boundary of the notched hole C is mapped
onto the circumference c of the unit circle (with f ¼ eih along c).
The parametric representation of the curves in the Oxy-plane transformed by (1) has as follows:

x ¼ a0 cos h
q

þ
Xn

k¼1
q2k�1a2k�1 cosð2k � 1Þh

y ¼ � a0 sin h
q

þ
Xn

k¼1
q2k�1a2k�1 sinð2k � 1Þh

ð2Þ

The transformation of the Cartesian coordinates ðx; yÞ through the parametric equations (2) will result in
a new orthogonal system of curvilinear coordinates (Fig. 4a) that corresponds to the families of curves

q ¼ constant ðctÞ and h ¼ constant ðctÞ in the f-plane (Fig. 4b). The parametric representation of the
notched opening boundary C is obtained by setting q ¼ 1 into relationships (2).

The algorithm for the computation of the constant coefficients a0, a2k�1 ðk ¼ 1; 2; . . . ; nÞ that has de-
veloped in this work has as follows:

ii(i) First, the curve C of the boundary of the opening is digitized by means of a suitable CAD software.
Then it is divided into (mþ 1) sampling points (mP 1), with the first and the last points coinciding, in

an anti-clockwise sense as it is shown in Fig. 5. The density of these points is increased in regions of

large variations of the radius of curvature (i.e. in these points of the boundary in which a large devi-

ation of the tangent to the boundary and the normal line to the radius connecting the point with the

centre of coordinates occurs). In a first approximation, it is assumed that these points correspond to

h ¼ 2p=m equidistant points along the boundary of the unit disk in a clockwise sense.

3 A transformation of the form x ¼ xðn; gÞ, y ¼ yðn; gÞ is said to be conformal if the angle between intersecting curves in the ðn; gÞ-
plane remains the same for corresponding mapped curves in the ðx; yÞ-plane.
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i(ii) Next, we calculate, in a first approximation, the constant coefficients of the mapping function (1) by

solving the overdetermined linear system of m equations with n unknowns with an appropriate least
squares numerical scheme

AX ¼ B () X ¼ ðATAÞ�1ATB ð3Þ

in which m is the number of sampling points and the matrices are defined as follows:

Fig. 4. Conformal mapping of (a) an infinite soil/rock mass surrounding a notched hole into (b) the interior of the unit circle q6 1.

Fig. 3. (a) Doubly symmetric hole subjected to an anisotropic stress field and system of coordinates and (b) disk of unit radius and

system of coordinates.
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A ¼

1
f0

f0 f30 	 	 	 f2n�10

1
f1

f1 f31 	 	 	 f2n�11

1
f2

f2 f32 	 	 	 f2n�12

..

. ..
. ..

. ..
. ..

.

1
fm

fm f3m 	 	 	 f2n�1m

2
666666664

3
777777775
; X ¼

a0
a1
a3
..
.

a2n�1

2
666664

3
777775; B ¼

z0
z1
z2
..
.

zm

2
666664

3
777775 ð4Þ

(iii) After the first estimation of the constant coefficients a0, a2k�1 ðk ¼ 1; 2; . . . ; nÞ the new points on the
physical boundary of the opening at the z-plane are calculated by virtue of the mapping function
(1). Subsequently, for each point predicted by the mapping function, the intersection of the line that

connects this point and the centre of coordinates with the prescribed physical boundary is used as
the new z-value. These new z-values are next substituted into the system (4) which is solved for the es-

timation of the new improved values of a0, a2k�1 ðk ¼ 1; 2; . . . ; nÞ.
(iv) This iterative procedure is continued until a prescribed small error is achieved, that is equal to the sum

of the squares of the differences between the actual and predicted boundary points of the hole.

Fig. 6a and b illustrates the approximations of the boundary of the hole by using the above algorithm

when R2=R1 ¼ 0:1 and R2=R1 ¼ 0:4, respectively. It was found that n ¼ 14 is adequate for the good ap-

proximation of the curves of holes in the range of relative radii R2=R1 ¼ 0:1� 1.

3. Solution of the traction boundary value problem of the notched hole

In the frame of the theory of complex potential functions, the boundary condition for the case that forces
are prescribed along the contour c of the unit disk takes the form (Muskhelishvili, 1963)

/0ðfÞ þ
1

2pi

Z
c

xðrÞ
x0ðrÞ

/0
0ðrÞdr
r � f

¼ 1

2pi

Z
c

f0dr
r � f

ð5Þ

in which r ¼ eih denotes an arbitrary point of the contour c, and

Fig. 5. Example of distribution of sampling z-points for the hole with R2=R1 ¼ 0:4.
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f0ðrÞ ¼ f ðrÞ � Ca0
r

þ xðrÞ
x0ðrÞ

C�aa0r
2 � C0�aa0r ð6Þ

Also,

C ¼ 1

4
ðN1 þ N2Þ; C0 ¼ � 1

2
ðN1 � N2Þ ð7Þ

with N1, N2 referring to the principal stresses at infinity acting along Ox- and Oy-axes, respectively (e.g. Fig.
3a). The quantity f ðrÞ in the case of uniform pressure �P , where P is a positive quantity (unless stated
otherwise tensile stresses are considered positive quantities) applied to the edge of the hole is given by the

relation

f ðzÞ ¼ �Pz ¼ �PxðfÞ ð8Þ

The methodology of solving the Cauchy integral equation (5) by employing a Laurent series expansion

of /0ðfÞ has been presented elegantly by Muskhelishvili (1963). The same author has presented the solution
for the elliptical opening, whereas Savin (1961) and Novozhilov (1961) have solved the problems of square

and rectangular openings. On the other hand, as it was mentioned in Section 1, Mitchell (1966) was the first

investigator who solved the stress-concentration problem of the doubly symmetric hole by employing

Muskhelishvili�s method. Also, recently, the same methodology has been applied for the solution of tunnels
with one axis of symmetry (Exadaktylos and Stavropoulou, 2002).

Proceeding formally, from Eq. (1) it may be inferred that we may write

xðrÞ
x0ðrÞ

¼ b2n�3r2n�3 þ b2n�5r2n�5 þ 	 	 	 þ b1r1 þ
b�1
r

þO 1

r3

	 

ð9Þ

wherein the constant coefficients b2k�1 ðk ¼ 0; . . . ; n� 1Þ are represented in closed-form in terms of the

constant conformal mapping coefficients a0, a2k�1 ðk ¼ 1; . . . ; nÞ and Oð	Þ denotes Landau�s order-
of-magnitude symbol. Note that we do not present here the closed-form expressions for the b-coefficients
for the case n ¼ 14 that is used in this work hereafter, since they are lengthy. However, in Appendix A we

illustrate the closed-form expressions for n ¼ 3. Due to the symmetry of the problem we may write the
following polynomial expression of the analytic function /0ðfÞ

Fig. 6. Approximations of the boundary of the doubly symmetric holes with: (a) R2=R1 ¼ 0:1 and (b) R2=R1 ¼ 0:4.
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/0ðfÞ ¼
Xn

k¼1
c2k�1f

2k�1 ð10Þ

where c2k�1 ðk ¼ 0; . . . ; nÞ are unknown constant real coefficients to be determined from the boundary

conditions. Also the combination of relationships (9) and (10) gives the following relation

xðrÞ
x0ðrÞ

/0
0ðrÞ ¼

Xn�1
k¼1

K2k�1r2k�1 þO
1

r

	 

ð11Þ

in which the constant real coefficients K2k�1 ðk ¼ 1; . . . ; n� 1Þ are represented in closed-form in terms of the
constant conformal mapping coefficients a0, a2k�1ðk ¼ 1; . . . ; nÞ and the still unknown constant series terms
of the potential function /0ðfÞ, i.e. c2k�1 ðk ¼ 1; . . . ; nÞ (see Appendix A for the closed-form expressions for

K-coefficients for the particular case n ¼ 3).

By substituting into (5), the expressions (6), (10) and (11) and evaluating analytically the Cauchy inte-

grals we obtain

Xn

j¼1
c2k�1f

2k�1 þ
Xn�1
k¼1

K2k�1f
2k�1 ¼ �P

Xn

k¼1
a2k�1f

2k�1 � C0a0f þ Ca0f
2
Xn�1
k¼0

b2k�1f
2k�1 ð12Þ

Next, by comparing the same powers of the complex variable f in Eq. (12), the following linear system of

complex algebraic equations is obtained for the computation of the constant coefficients c1; c3; . . . ; c2n�1

1þ K1ðfÞ K1ðf3Þ 	 	 	 K1ðf2n�3Þ 0

K3ðfÞ 1þ K3ðf3Þ 	 	 	 0 0

K5ðfÞ K5ðf3Þ 	 	 	 0 0

..

. ..
. ..

. ..
. ..

.

0 0 0 	 	 	 1

2
666664

3
777775

c1
c3
..
.

c2n�1

2
6664

3
7775 ¼

�Pa1 � C0a0 þ Ca0b�1
�Pa3 þ Ca0b1

..

.

�Pa2n�1 þ Ca0b2n�3

2
6664

3
7775 ð13Þ

where the terms KaðfbÞ denote that part of the constant coefficients K2k�1 that contains cb and is multiplied
by the ath power of f (as an example, we refer here to the closed-form results that are displayed in Appendix
A for n ¼ 3). The solution of the linear system of algebraic equations (12) for the unknowns
c2k�1 ðk ¼ 1; . . . ; nÞ gives the first complex potential as follows:

/ðfÞ ¼ Ca0
f

þ /0ðfÞ ð14Þ

Finally, the second complex potential function is given by the formula

wðfÞ ¼ C0a0
f

� a0ðC þ P Þf � xðfÞ
x0ðfÞ/0

0ðfÞ
"

�
Xn�1
k¼1

K2k�1f
2k�1

#
þ Ca0

xðfÞ
x0ðfÞ

"
�
Xn�1
k¼0

b2k�1f
�2k�1

#
1

f2
ð15Þ

Then, in polar coordinates ðq; hÞ the radial, tangential and shear stresses denoted as rq, rh, sqh, respectively,

and the radial and tangential incremental displacements tq, th due to stress relief at the breakout boundary,
may be computed by virtue of the following formulae

rq þ rh ¼ 4Re /0ðfÞ
x0ðfÞ

h i
rq � isqh ¼ 2Re /0ðfÞ

x0ðfÞ

h i
� f2

q2 �xx0ð�ffÞ ½ �xxð�ffÞf/0ðfÞ=x0ðfÞg0 þ x0ðfÞw0ðfÞ�

2Gðtq þ ithÞ ¼
�ff
q

�xx0ð�ffÞ
qjx0ðfÞj j/0ðfÞ �

xðfÞ �//0
0
ð�ffÞ

�xx0ð�ffÞ � �ww0ð�ffÞ
� �

9>>>>>=
>>>>>;

ð16Þ
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where primes denote differentiation (i.e. /0 � d/=df), j 	 j denotes the absolute value or the modulus of the
complex quantity it encloses, j denotes Muskhelishvili�s constant with j ¼ 3� 4m for plane strain condi-
tions, G ¼ E=2ð1þ mÞ is the shear modulus, and E, m is the Young�s modulus and Poisson�s ratio of the
isotropic rock/soil mass, respectively. Also, the displacements referred to the Cartesian coordinate system
Oxy are given by

2Gðux þ iuyÞ ¼ j/0ðfÞ �
xðfÞ �//0

0ð�ffÞ
�xx0ð�ffÞ

� �ww0ð�ffÞ ð17aÞ

in which we have put

w0ðfÞ ¼ wðfÞ � C0xðfÞ ð17bÞ

The above expression for the displacements (17a) corresponds to the case of excavating a hole in a pre-

stressed medium in which the surface tractions are totally relieved along the contour of the hole. That is, the

displacements fade-out with distance from the hole. The same holds true for the stress expressions (16),

since the considered boundary value problem of the hole in an initially unstressed medium yields––by
means of the superposition principle––the same stress distribution with the problem of the hole excavated

in a pre-stressed medium.

4. Comparison of the closed-form solution for the doubly symmetric hole with existing analytical stress-

concentration solutions and the FLAC finite differences code

In order to compare the present solution with the Mitchell�s (1966) solution pertaining to the stress-
concentration factor (SCF) at the notch, we consider the doubly symmetric hole that is subjected to far-field

uniaxial compression N2. Graphical results pertaining to the variation of the SCF, Kt ¼ rhðh ¼ 0�Þ=N2, with
the radii ratio R2=R1, are presented in Fig. 7. As it was noted by Mitchell, for very small values of the notch
radius, i.e. R2 ! 0, the local stress distribution will be the same as that around a semi-circular notch in a

half-space. Since the SCF of a circular hole is equal to 3 and that of a semi-circular notch in a half-space is

3.08, the limiting value of Kt as R2 tends to zero is 3� 3:08 ¼ 9:24. On the other hand, as R2 ! 1 the SCF

tends to the value of 3.

Fig. 7. Comparison of the predicted variation of the stress concentration factor Kt with the ratio of radii of the notch and the hole for

uniaxial compression at infinity with Mitchell�s and �equivalent ellipse� solutions.
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Mitchell (1966) have demonstrated that his results can be approximated with a high degree of accuracy

by an �equivalent ellipse� (Fig. 8). The length of the horizontal semi-axis of the equivalent ellipse, herein
denoted by the symbol b, is equal to the that of the doubly symmetric hole, i.e.

b ¼ R1 þ R2 ð18Þ
whereas the length of the vertical semi-axis is found by requiring that the radius of curvature of the ellipse

at the end of the horizontal semi-axis to be equal to the radius of the notch. Since the radius of curvature of
the ellipse at the end of the horizontal axis is given by

RH ¼ h2

R1 þ R2
ð19Þ

where RH is the horizontal radius of curvature at wall, and h denotes the semi-height of the elliptical
opening, then by putting RH ¼ R2 one finds

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðR1 þ R2

p
Þ ð20Þ

The fundamental solution in terms of the complex potentials /, w for the elliptic hole with tractionless

edge subjected to far-field uniaxial compression N2 is given by Muskhelishvili (1963). The recovered result
from Muskhelishvili�s fundamental solution concerning the distribution of the hoop stress along the pe-
riphery of the cavity reads as follows:

rhðq ¼ 1; hÞ ¼ ðb� hÞ2 þ ðbþ hÞ2 cos 2h
b2 þ h2 � ðb2 � h2Þ cos 2hN2 ð21Þ

The elastic SCFs at the tips of the ellipse is obtained from the above expression (21), i.e.

Ke
t ¼

rhð1; 0�Þ
N2

¼ 2b
h

	
þ 1



ð22Þ

As it is displayed in Fig. 7 the equivalent ellipse solution displays excellent agreement with Mitchell�s so-
lution. Finally, the derived closed-form solution agrees very well with both models with the maximum

relative error with regard to Mitchell�s solution not exceeding 5% in the range of relative radii
0:16R2=R16 1.
Next, in order to demonstrate the potential applications of the proposed solution in soil/rock engineering

we investigate the case of the notched hole with traction-free boundary subjected to all-around uniform

compression N1 ¼ N2 ¼ N at infinity. Since Mitchell has not pursued this problem, the results of the present
closed-form solution are compared to those referred to the equivalent elliptic hole and to the results of

FLAC2D finite difference numerical model (ITASCA, 1995). 4

Fig. 8. Equivalent ellipse concept.

4 This numerical model is used extensively worldwide for the design of underground excavations in geomaterials.
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Later we will see that we also need the SCF-solution of the equivalent ellipse. The recovered result from

Muskhelishvili�s fundamental solution concerning the distribution of the hoop stress in the direction of the
major axis of the elliptical hole, h ¼ 0� (by adopting the same polar coordinate system as in the case of the

doubly symmetric hole, e.g. Fig. 3), as well as along the periphery of the cavity, respectively, read as fol-
lows:

rhðq ¼ 1; hÞ ¼ 4bhN
b2 þ h2 � ðb2 � h2Þ cos 2h ð23Þ

The elastic SCFs at the tips of the ellipse is obtained from (23) as follows:

Ke
t ¼

rhð1; 0�Þ
N

¼ 2b
h

ð24Þ

An example of FLAC zone geometry employed in this study is illustrated in Fig. 9. It may be observed

the zone size is increasing away from the hole boundary. The symmetry of the problem with respect to Ox-
and Oy-axes has been exploited in the numerical model by considering only the upper-right quarter part.
Roller boundaries are employed to model zero displacement along the respective lines of symmetry.

The dependence of the SCF on the ratio R2=R1 is presented graphically in Fig. 10. In the same figure, the
limiting value of the SCF as R2 ! 1, that corresponds to the circular hole, SCF ¼ 2, has been also plotted

with a dashed line. Also it may be seen that the predictions of the FLAC2D model are in reasonable

agreement with the closed-form and equivalent ellipse solutions apart for R2=R1 < 0:2. This is due to the
fact that the grid size should be appreciably smaller than the notch size in order for the finite differences

model to be accurate. On the contrary, the analytical solution is not subjected to such a constraint.

The distributions of the dimensionless hoop stress around the doubly symmetric hole for the particular
case of a breakout with R2=R1 ¼ 0:4 that is subjected to all-around uniform pressure of 1 MPa at infinity,

are illustrated in Fig. 11a. Note that in this section compressive stresses are considered to be positive

quantities. Also, Fig. 11b illustrates the contour plot of tangential stresses around the hole that is predicted

by the closed-form solution. The two predictions compare very well, apart from the region surrounding the

corner point depicted by the intersection of the two circles. The reason for this discrepancy is: (i) because

the conformal mapping function introduces some smoothing of the corner region as it is displayed in Fig.

6b, and (ii) as it is illustrated in Fig. 12a, the numerical FLAC model predicts finite radial and shear stresses

at the notch region whereas the closed-form solution predicts almost zero tractions along the boundary of
the hole (Fig. 12b).

The variations of the tangential and radial stresses along the Ox-axis of the doubly symmetric hole are
also of interest due to the existence of the stress-gradient effect, which in turn influences the strength of

opening wall (Jaeger and Cook, 1976). Fig. 13 illustrates the distributions of the tangential and radial

stresses along Ox-axis predicted by the FLAC2D finite differences scheme and by the proposed solution. It
may be seen from these figures that rh drops from its maximum and approaches the value of 1 MPa at large

radii r. Furthermore, the example of Fig. 13 reflects the general result, namely major perturbations to
the applied stress field occur only within approximately a dimensionless distance ð1þ R2=R1Þ from the
boundary of the hole, with the greatest stress gradients confined to a highly localized region of dimension

just about R2=R1 surrounding the position of maximum concentration. Some discrepancy of the numerical

solution from the analytical solution close to the notch tip is due to the error introduced by the numerical

model at this region. That is, the numerical model predicts finite shear and radial stresses at the notch tip

(h ¼ 0� in Fig. 12a).
Fig. 14a presents the comparison between FLAC and analytical models pertaining to the variation of

horizontal and vertical displacements, ux, uy , around the plane strain notched hole characterized by

E ¼ 6:77 GPa and m ¼ 0:21. From this figure, it may be seen that both predictions are in very good
agreement. The analytical solution is also illustrated by the displacement plot in Fig. 14b.
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Fig. 9. (a) FLAC finite difference grid for the case of breakout with R2=R1 ¼ 0:4 and (b) detail of the zone geometry near the boundary

of the notched hole.
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Fig. 10. Comparison of the SCF for the equivalent ellipse subjected to far-field uniform compression with the results of analytical

solution and FLAC numerical solution.

Fig. 11. (a) Comparison of the hoop stress, rh, along the periphery of the doubly symmetric hole, and the circular hole and (b) contours

of hoop stress, rh (in MPa), predicted by the analytical solution.

Fig. 12. Plot of radial and shear stresses around the boundary of the opening: (a) prediction of the FLAC numerical model and

(b) prediction of the conformal mapping solution.
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Fig. 13. Distribution of the normalized hoop stress rh and radial stress rr, along Ox-axis for the doubly symmetric hole characterized
by R2=R1 ¼ 0:4 and subjected to all-around uniform pressure of 1 MPa. Note that concentration is localized within (R1 þ R2) from tip,

with high stress gradients within approximately R2 from tip.

Fig. 14. (a) Plot of the vertical and horizontal displacements along the periphery of the doubly symmetric hole characterized by

R2=R1 ¼ 0:4 predicted by the numerical and analytical model and (b) displacement vectors predicted by the analytical model.

Fig. 15. Hole with dog-ear cross-sectional shape. The angle subtended at the centre of the hole by the intersection of the breakout and

the circumference of the opening is equal to 30� and the length of the notch from the circumference is 0:2� R1 (R1 ¼ 1). Colormap of

the distribution of radial displacement for N1=E ¼ N2=E ¼ �1=50 and m ¼ 0:3.
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It is noted here that the semi-analytical solution holds true for any shape of anti-diametrical notches at

the boundary of the hole. As an example, we present here in Fig. 15 displacement data for the particular

case of dog-eared notched hole configuration.

5. Stability of borehole breakouts

5.1. Effect of internal pressure on borehole collapse

One of the borehole stability controlling parameters is the borehole pressure, as it influences the stress-

concentration effect directly. In this paragraph we investigate the stress-concentration effect in circular and

notched-circular holes by employing the semi-analytical solution presented in Section 3. When the absolute

pressure P that is exerted on the boundary of a borehole drops, the tangential stress at the wall increases,
and it results in a borehole collapse if this stress exceeds the biaxial compressive strength of the rock.
For the case of the circular–cylindrical hole subjected to a biaxial far-field principal stresses and internal

pressure, the variation of the tangential stress around its boundary is given by the formula 5 (Muskhe-

lishvili, 1963)

rh

ry
¼ 1þ k þ 2ð1� kÞ cos 2h þ P

ry
ð25Þ

wherein k ¼ rx=ry . The distribution of the tangential stress around the circular hole is illustrated in Fig. 16

for various internal pressures for the case of k ¼ 0:9.
On the other hand, the variation of tangential stress around the notched hole with R2=R1 ¼ 0:4 is shown

in Fig. 17, for various borehole pressures. For both cases it may be seen that the highest stress concen-
tration occurs always at the points of the contour corresponding to h ¼ 0�, 180�, i.e. along the direction of
the minimum principal stress. Lowering the borehole pressure results in an increase of the tangential stress

at these points.

From Fig. 18, it is observed that the following three conditions are possible.

(a) The condition �P=ry ¼ 1:2 in which the maximum tangential stress is the same for the notched and the

circular holes.

(b) The condition �P=ry > 1:2 in which the maximum tangential stress is higher for the circular hole than
for the notched hole.

(c) The condition �P=ry < 1:2 in which the maximum tangential stress is higher for the notched hole than

for the circular hole.

These three conditions can be interpreted as follows. For case (a), there is no preferred cross-sectional

hole shape, that is, if the circular hole is stable, it is equally stable in a notched shape. For the case (b), the

notched circular hole will lead to a lower tangential stress, hence it is more stable than the circular hole.

Finally, for the case (c), a collapsed circular hole will lead to a higher stress concentration. This in turn may
lead to an unstable failure process.

From the above discussion, it is clear that the borehole pressure should be equal or higher than 1.2 times

the highest normal stress on the borehole to avoid collapse. However, practical well situations it is not

always possible to keep the borehole pressure sufficiently high to fully avoid collapse. A lower borehole

pressure may initiate a collapse that will stabilize by some mechanism other than classical linear elastic rock

5 In this section, we consider compressive stresses as negative quantities.
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Fig. 16. Distribution of dimensionless tangential stress around the circular hole for various borehole pressures at hand and for

rx=ry ¼ 0:9.

Fig. 17. Distribution of dimensionless tangential stress around the doubly-symmetric hole with R2=R1 ¼ 0:4 for various borehole

pressures at hand and for rx=ry ¼ 0:9.

Fig. 18. Maximum dimensionless tangential stress at h ¼ 0� as a function of borehole pressure for rx=ry ¼ 0:9.
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behaviour. Hence, there is a need to investigate the stabilizing effect in boreholes. This is performed in the

next paragraph.

5.2. The theory of stress-mean-value and the self-support effect

The theories of continuum mechanics (e.g. elasticity and plasticity) use idealized models mostly based on

the assumption of a continuous distribution of matter, as opposed to statistical theories of mechanics that

are based on the assumption of a discrete distribution of matter. In the framework of local continuum

theories, quantities such as stress and strain, represent statistical mean values taken over very small ranges

of volume. Consequently continuum theories cannot give satisfying predictions of the behaviour of the
material within very small ranges of volume, if high gradients of stress and strain occur. Especially these

local theories cannot describe processes with dominating structure effects since all material qualities pro-

ducing effects of such kind had been eliminated by introducing the idealized models. Within the field of

strength of materials the above restriction becomes very important in connection with problems of high

stress concentration as caused by extremely curved surfaces, e.g. at holes and notches. In such cases, the

classical theory of elasticity predicts high values of stress and strain which are replaced by mean values.

Mathematically speaking, if

�ff ¼ f ðxÞ ð26Þ

is the value of the function f in the middle of the interval ½x� L=2; xþ L=2� and

hf i ¼ 1

L

Z L=2

�L=2
f ðxþ dxÞdx ð27Þ

is the mean value of function f in the same interval, then the following relationship holds true

hf i ¼ �ff � L2

48

d2f
dx2

����
x

þOðL4Þ ð28Þ

The above simple relation (28) means that if the function f is either constant or varies linearly with the
variable x in the open interval ½x� L=2; xþ L=2� then the trapezoidal rule is valid and

hf i ¼ �ff ð29Þ

On the other hand, if f is characterized by intense curvature in the region of interest––i.e. the notch tip
region––then the above formula has to be corrected by taking also into account the second term in (28).

By such a simple mathematical procedure an approximate representation of a fundamental structure

effect becomes possible which is called here ‘‘self-support-effect’’. It is worth noting that the same stress-
mean value approach taken over a finite length normal to the surface within the range of high stress

concentration was followed by Neuber (1936) to develop his theory of sharply curved notches. The intrinsic

length scale L of structure appearing in (27) and (28) represents an additional material property. In this
way, from (27) a �comparison stress� may be defined that is calculated be means of a suitable strength
hypothesis valid for the material. Since practical experience indicates that the spalling occurs in the region

of maximum tangential stress around the boundary of the opening then the simple maximum-compressive-

stress criterion for brittle materials is the most appropriate and takes the following form

rh P r0; h ¼ 0� ð30Þ

where r0 is the unconfined compressive strength of the rock. Thus, the comparison stress in this case is the
hoop stress along the major axis of the notched hole and the stress-mean-value becomes
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hri ¼ 1

L

Z L

r¼0
rhðrÞdr ð31Þ

where the value of the comparison stress rhðrÞ may be found from (16) and r denotes the radial distance
from the notch tip (i.e. at h ¼ 0�). In most technical quasi-brittle materials, such as rock, the domains in the
vicinity of the highly stress point participate in the force transmission more intensively than according to

the linear theory of elasticity, during the endangered point itself is somewhat relieved; this self-support-

effect of a notched hole is taken into account by the above formula (31). It should be noted here that the

present theory of stress-mean-value is based on the assumption of the continuity of material at the notch tip

region. However, rock microcracking in front of the notch may be taken into account by recourse to the

famous ‘‘surface energy’’ concept of Griffith and Irwin. Thus, by denoting the surface energy of the rock––
reflecting rock microcracking––by the symbol c and by dividing it by the modulus of elasticity of the rock E
we get

L ¼ ac
E

ð32Þ

wherein a is some dimensionless constant that accounts for the density of microcracks that are developed in
the process zone in the vicinity of the notch tip. The quantity L has the dimensions of a length, and it may
be considered as a characteristic micro-scale length of the rock. Therefore, the effect of microcracks is

reflected into the intrinsic length scale L of the rock that is responsible for the stabilization phenomenon of
the borehole, as is it will be demonstrated below.

By keeping in mind that the geometry of the breakout plays a key role on the hoop stress distribution

near the notch and its stability, we consider here a breakout geometry that resembles closely real-life
breakouts as those shown in Fig. 19. Our ‘‘elliptical breakout model’’ is constructed by a circular hole of

radius ri and an intersecting ellipse with the same centre and semi-axes a and b (a > b) with a ¼ ri þ d,
b ¼ ri � d (d ¼ breakout depth) subjected to far-field principal stresses rH P rh (Fig. 20a). The breakout

propagation is simulated with consecutive ellipses characterized by larger semi-axis, a, than the previous
one and so on (Fig. 20b). The conformal mappings of successive borehole breakouts are estimated by the

proposed numerical algorithm (Fig. 20c).

Fig. 19. Borehole breakout configuration in rock (with the courtesy of Papamichos (2002)).
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In Fig. 21, the dependence of the SCF, Kt ¼ rh=rh, on the slenderness, s ¼ 1þ d=ri, for a stress ratio of
k ¼ rh=rH ¼ 0:5 and for various values of the dimensionless length scale k ¼ L=ri, is displayed. From this

figure the following points may be noted:

ii(i) For k ¼ 0 and for s ¼ 1 which means that the hole is circular, the SCF takes the value of Kt ¼ 5 as it is

predicted by the classical elasticity theory.

i(ii) Below a certain value of k, the SCF is always lower than the respective value for lower k, and increases
monotonically with the hole slenderness, thus indicating an always unstable borehole breakout prop-

agation.
(iii) However, for k P 0:7, the elliptical breakout model exhibits first an increase with s, then it takes a peak

value and finally it decreases with slenderness. This means that for sufficiently large value of the rela-

tive internal length scale of the medium the breakout may develop in a stable manner, i.e. additional

external energy is needed for further breakout development. This is demonstrated in another example

below.

Fig. 22 displays the dependence of the relative minor horizontal stress on the hole slenderness that is

needed for breakout propagation according to the failure criterion (30), for the two values of dimensionless
length scale at hand and for constant stress ratio k ¼ 0:5. As it was expected, classical elasticity theory (i.e.
k ¼ 0) predicts always a decreasing relative horizontal stress with hole slenderness. On the other hand, the

stress-mean-value theory for sufficiently large intrinsic length scale predicts initially unstable breakout

propagation that is followed by a stable propagation phase.

Fig. 20. (a) Geometry and loading configurations for the elliptical breakout; (b) assumed ‘‘elliptical’’ breakout development and (c)

method of sampling along the digitized contour of the notched hole for the numerical evaluation of the conformal mapping coefficients.
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From the above results, it may be noted that the intrinsic length scale L of a specific rock type with
known uniaxial compressive strength may be estimated from laboratory experiments by measuring

breakout geometry as well as the final breakout configuration and subsequently calibrating the proposed

theory by using L as a control parameter.

6. Conclusions

A semi-analytical solution of the notched hole has been presented that is based on the conformal

mapping representation combined with Muskhelishvili complex potentials. The solution can be used for the

optimum design of openings in rocks (i.e. boreholes, tunnels, galleries etc.) under given in situ stress field,

rock deformability and strength data, or for back-analysis of borehole breakout data for the estimation of

in situ stresses. It is a valuable tool for conceptual understanding of how certain parameters––such as
notched hole configuration, in situ stresses and internal pressure––affect the stresses and displacements.

Fig. 21. Plot of the SCF with respect to the slenderness of the hole for various internal length scales and for k ¼ 0:5.

Fig. 22. Plot of the relative minor principal stress with respect to the slenderness of the hole for two values of the internal length scale

and for k ¼ 0:5.
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The proposed solution can be easily extended to consider either non-symmetrical notched-hole configu-

rations or non-circular cross-sectional shapes of the initial opening by an appropriate choice of the constant

conformal mapping coefficients with the CAD/numerical scheme presented in Section 2.

Numerical results have been presented concerning the hole under uniform uniaxial and biaxial far-field
compression. It is demonstrated, be means of comparison with an already existing analytical solution and

with the FLAC2D finite differences code, respectively, that the analytical solution can be effectively used for

studying the stresses and displacements around doubly-symmetrical holes. Of course, it cannot be a sub-

stitute for highly versatile and powerful methods of numerical analysis; yet, this solution and likes of it are

indispensable when it comes either to testing and calibrating numerical codes or to back-analyze stress,

deformation and failure measurements.

Finally, keeping in mind that the continuum theory works well for uniform or linear distribution of

quantities such as stress and strain, a stress-mean-value theory is proposed, which is a second-order cor-
rection of the classical theory in order to take into account high stress gradient effects in the vicinity of a

notch. It is demonstrated that the proposed simple theory in conjunction with a maximum unconfined

compression stress criterion is capable to predict the stability of borehole breakouts. This in turn, permits

one to use the semi-analytical solution as a very fast solver for in situ back-analyses of televiewer images of

borehole breakouts.
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Appendix A

This example demonstrates that the complex function /ðfÞ may be found in closed-form provided that
the conformal mapping xðfÞ has been found numerically. In order not to present lengthy expressions for
n ¼ 14, we consider here a mapping function with three series terms (i.e. n ¼ 3) as follows:

xðfÞ ¼ a0
f
þ a1f þ a3f

3 þ a5f
5 ðA:1Þ

Then Eq. (9) takes the form

xðfÞ
x0ðfÞ

¼ b3f
3 þ b1f þ

b�1
f

þO 1

f3

	 

ðA:2Þ

wherein

b3 ¼ � a5
a0

b1 ¼ �
a3 þ a5a1

a0

a0

b�1 ¼ �
a1 þ

3a5a3
a0

þ ða3a0 þ a5a1Þa1
a20

a0

9>>>>>>>>>=
>>>>>>>>>;

ðA:3Þ
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Also, Eq. (11) gives the following relation

xðfÞ
x0ðfÞ

/0
0ðfÞ ¼ K3f

3 þ K1f þO
1

f

	 

ðA:4Þ

in which

K1 ¼ �3 a5c3
a0

� c1a3
a0

� c1a5a1
a20

K3 ¼ � a5c1
a0

9>=
>; ðA:5Þ

Next, by comparing the same powers of the complex variable f in Eq. (12) the following linear system of

complex algebraic equations is obtained for the computation of the constant coefficients c1, c3 and c5

1� a3
a0
� a5a1

a2
0

�3 a5
a0

0

� a5
a0

1 0

0 0 1

2
4

3
5 c1

c3
c5

2
4

3
5 ¼

�Pa1 � C0a0 þ Ca0b�1
�Pa3 þ Ca0b1
�Pa5 þ Ca0b3

2
4

3
5 ðA:6Þ

The solution of the above system is the following:

c1 ¼ �C½a0ða1a0 þ 6a5a3 þ a1a3Þ þ a5a1ð3a5 þ a1Þ� þ Pa0ða1a0 þ 3a5a3Þ þ C0a30
a0ða0 � a3Þ � a5ða1 þ 3a5Þ

c3 ¼ �C½a0ð2a5a1 þ a3a0 � a23Þ þ a5a3ð3a5 � a1Þ� þ P ½a0ða5a1 þ a3a0 � a23Þ � a3a5a1� þ C0a5a20
a0ða0 � a3Þ � a5ða1 þ 3a5Þ

c5 ¼ �Ca5 � Pa5

ðA:7Þ

Finally, the complex functions /ðfÞ and wðfÞ can be easily computed by virtue of Eqs. (14) and (15),
respectively. Subsequently, the stresses and displacements can be computed by using Eqs. (16).
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